Annual Energy Savings

_____ ft²

 t_{hours} = time that there is airflow through the collector (length of collector operating day) t_{days} = time that there is airflow through the collector (length of collector operating week) t_{weeks} = time that there is airflow through the collector (length of collector operating season) t_{weeks} = useful energy from the collector (from Map 1) ______ kBtu/ft²-year

q_{fan} = fan energy for airflow through the collector _____ W/ft² (typically about 1 W/ft²)

U_{wall} = heat loss coefficient for the building wall _____ Btu/°F-ft²-hour

HDD = annual heating degree-days (from Map 2) _____ °F-days/year

E_{htg} = efficiency of the conventional heating system _____ fraction

Q_{solar} = solar energy collected (MBtu/year)

collector area

Q_{wall} = wall heat recapture (MBtu/year) (only significant for very poorly insulated walls)

 Q_{saved} = thermal energy savings (MBtu/year)

 Q_{fan} = fan energy use (kWh/year)

Thermal Energy Savings:

 A_{coll}

$$Q_{solar} = \underbrace{A_{coll}}_{Q_{solar}} x \underbrace{A_{coll}}_{Q_{solar}} x (\underbrace{t_{days}}_{days} \div 7) \div 10^{3} = \underbrace{MBtu/year}$$

$$Q_{wall} = \underbrace{-A_{coll}}_{A_{coll}} x \underbrace{-U_{wall}}_{V_{wall}} x \underbrace{-V_{wall}}_{V_{bours}} x \underbrace{-V_{bours}}_{V_{bours}} x \underbrace{-V_{bours}}_{V_{bour$$

$$Q_{saved} = (\underbrace{Q_{solar}} + \underbrace{Q_{wall}}) \div \underbrace{E_{htq}} = \underbrace{MBtu/year}$$

Electrical Energy Parasitics:

$$Q_{fan} = \frac{x}{A_{coll}} \frac{x}{q_{fan}} \frac{x}{t_{hours}} \frac{x}{t_{days}} \frac{x}{t_{weeks}} \div 10^3 = \frac{kWh/year}{t_{days}}$$